Technical Memorandum

Sunnyslope County Water District

Subject:	2015 Annual Salt Management Report	
Prepared For:	Regional Water Quality Control Board	
Prepared by:	Donald G. Ridenhour, District Engineer, PE 51790 (Expires 6/30/2016) (SSCWD)	
Reviewed by:	James Filice (SSCWD)	
Date:	January 15, 2016	

The purpose of this Technical Memorandum (TM) is to meet the Annual Salt Management Report requirements of the Regional Water Quality Control Board (RWQCB) Waste Discharge Requirement (WDR) Order No. R3-2004-0065 (December 3, 2004). Annual Salt Management Reports must be submitted by January 30th every year commencing in 2006. The report shall include, at a minimum:

- a. Calculations of annual salt mass discharged to the wastewater treatment system and disposal ponds with an accompanying analysis of contributing sources;
- b. Analysis of wastewater evaporation/salt concentration effects;
- c. Analysis of groundwater monitoring results related to salt constituents;
- d. Analysis of potential impacts of salt loading on the groundwater basin;
- e. A summary of existing salt reduction measures; and,
- f. Recommendations and time schedules for implementation of any additional salt reduction measures.

The TM is organized as follows:

1	I	Background	
2		Salinity	
2		Sources of Salt	
2	.2	Salt Mass Balance	7
2	.3	Groundwater Impacts	8
3	S	Salinity Reduction Measures	
3		Water Softeners	
3	.2	LESSALT Water Treatment Plant	9
3	.3	Groundwater Desalination	
3	.4	Hollister Urban Area Water and Wastewater Master Plan	
3	.5	Water Resources Association Groundwater Management Plan	
3	.6	Summary of Salt Reduction Options	
4	ľ	Next Steps	
Ref		ences	

1 Background

The Sunnyslope County Water District (SSCWD) in Hollister, California, operates one wastewater treatment plant (WWTP) (See Figure 1-1) that serve the residences and a few commercial businesses near the Ridgemark Golf Course. The facilities is known as Ridgemark I WWTP (RM I). In prior years SSCWD operated a second facility known as Ridgemark II WWTP (RM II). The RM II facility was not in use in 2014 and was decommissioned in the third quarter of 2013 after completion of the new wastewater treatment facilities at RM I.

Wastewater effluent from these WWTP contains relatively high salinity levels. Salinity concentrations in the potable water supply for the service area are already high and are increased through normal municipal use. Salinity is further increased by the widespread use of residential water softeners in the service area which are used to reduce hardness. Salt buildup in the groundwater basin is a concern and salinity management measures are necessary to preserve the long-term beneficial use of groundwater.

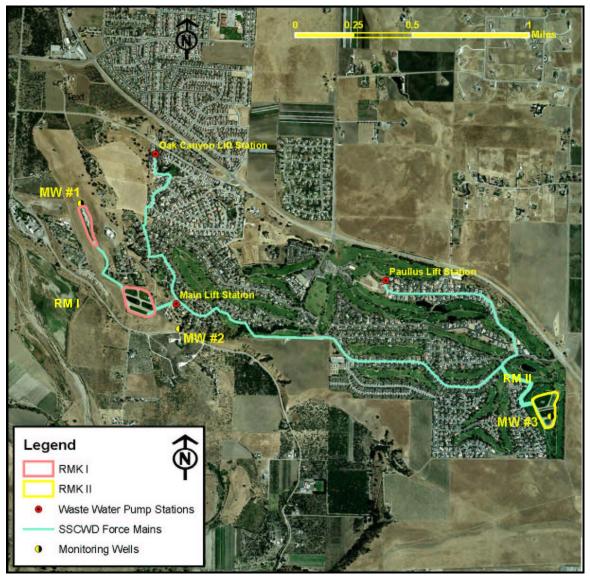


Figure 1-1: Ridgemark WWTP and Facilities

The new WDR permit, adopted in December 2004, includes a phased regulatory schedule to meet salinity water quality regulations. Beginning in January 2008, TDS, sodium and chloride concentrations in the WWTP effluent were subject to WDR limits shown in Table 1-1. Stricter limits were phased in two years later to achieve the final concentration limits by January 30, 2010.

Table 1-1: Salinity Waste Discharge Requirements in 2008 and 2010

	30-Day Average Limitations (mg/L)		
Effective Date	Interim	January 30, 2008	January 30, 2010
TDS	No Limit	1,500	1,200
Sodium	No Limit	300	200
Chloride	No Limit	300	200

2015 average influent and effluent wastewater quality (See Table 1-2) exceeds both the January 2008 and January 2010 salinity limits. Therefore, salinity management measures will need to be implemented to meet WDR limits. This report will summarize the salt sources contributing to salinity in the wastewater effluent and will present salt management and reduction measures to address high salinity concentrations.

Parameter	RM I SBR Influent	RM I SBR Effluent
TDS (mg/L)	1173	1103
Sodium (mg/L)	323	313
Chloride (mg/L)	473	452

Table 1-2: Existing 2015 Average Wastewater Quality

Notes:

1) Data consists of 12 monthly sampling events from January 2015 through December 2015.

2 Salinity

The effluent from RM I have high concentrations of TDS, sodium, and chloride relative to the local potable water supply. This section highlights the sources of these salt constituents and summarizes the results of a mass balance analysis that was performed on the system.

2.1 Sources of Salt

High effluent salinity concentrations stem from three factors including 1) concentrations of salinity in the potable supply, 2) normal municipal and industrial (M&I) contributions, and 3) operation of residential water softeners. Finally, effluent salinity concentrations are increased further by evaporation that occurs in the WWTP percolation ponds during warm weather periods. Evaporation does not increase salt load in the wastewater effluent in the percolation ponds. The contributions of each of these sources to concentrations observed in RM I effluent are documented below.

2.1.1 Water Supply

Groundwater from wells and surface water from the Lessalt surface water treatment plant is the source of potable water supply for the sanitary service area served by RM I. Groundwater contains relatively high concentrations of salts and hardness, while treated surface water has low concentrations of salts and hardness as shown in Table 2.1. Since Treated wastewater ultimately percolates to the basin, the groundwater salinity mass load pass through the water and wastewater systems and returns to the basin.

Constituent	Groundwater Concentration (mg/L)	Lessalt Surface Water Concentration (mg/L)
TDS	820	370
Total Hardness, CaCO ₃	406	128
Sodium	127	82
Chloride	136	120

Table 2-1: Existing Potable Water Quality

Source: SSCWD 2015 Well 5 & 8 Water Quality Data for Groundwater & 2015 LESSALT WTP for Surface Water

2.1.2 Municipal Use and Water Softeners

A large amount of salt is added through customer use. Normal municipal use can add from 150-300 mg/l of TDS. Additionally, because of the high hardness of the water supply, there is widespread utilization of residential water softeners, which is a significant source of salt. Water softeners remove the calcium and magnesium ions that are responsible for hardness. The water softener resin must be regenerated periodically through washing with a concentrate brine solution, most commonly sodium chloride. This wash water is sent to the sewer system during regeneration cycles and adds a significant amount of salinity to the water, water use, the extent of water softener use in the area, and the type and efficiency of the water softeners that are used. Water softener operational settings can also impact the regeneration frequency and result in higher salt loads to the WWTPs.

In 2015, the total TDS contribution from municipal use was approximately 803 mg/l based on the difference between source water quality data (370 mg/l from Lessalt WTP) and the influent water quality entering the WWTP (1173 mg/l). To determine an estimate for the water softener component, an analysis was performed using assumed values for the parameters listed in Table 2-2.

Parameter	Value
Potable Water Hardness	393 mg/l as $CaCO_3$
Assumed Average Water Softener Efficiency of SSCWD Area	2551 grains hardness removed per lb of salt
% of households using water softeners ^a	93%
% of household using KCI	15%
% of households using off site regeneration	4%
Household Indoor Use ^b	168 gpd

Table 2-2: Assumptions in the Water Softener Analysis

Footnotes:

a) Based on results from *Technological and Economic Feasibility Study Alternatives to Limiting or Prohibiting Water Softeners per Section 116786 of the Health and Safety Code*, Bracewell Engineering (November 2007) for SSCWD water service area.

b) Based upon average 2007 wastewater flows of 203,992 gallons per day divided by 1212 accounts = 168 gallons per day per account

Potable water hardness was based on the *SSCWD 2005 Annual Drinking Water Quality Report*. Average water softener efficiency was estimated based on an assumed distribution of water softener types throughout the service area. Older water softeners are typically timer-based which means that they regenerate periodically regardless of the actual water use. Timer-based softeners can have efficiencies as low as 1,500 grains of hardness removed per pound of salt (1 grain = 17.1 mg/l hardness). Demand Initiated Regeneration (DIR) softeners are tied to actual water use and have efficiencies ranging from 2,000-3,350 grains of hardness removed per pound of salt.

Based on the analysis, the estimated contribution to TDS from water softeners for the RM I service area is approximately 744 mg/l for 2012. Table 2-3 summarizes the relative contributions of sodium and chloride to the overall TDS addition using a 100% groundwater supply while Table 2-4 summarizes the relative contributions of sodium and chloride to the overall TDS addition using a 100% surface water supply.

Table 2-3 and 2-4 shows a comparison between estimated and actual total TDS concentrations for both a 100% groundwater supply and a 100% surface water supply. When using 100% groundwater, table 2-3 shows the estimated constituent values are based on the water softener analysis and an assumed M&I normal use TDS contribution of 151 mg/l. Sodium and chloride addition through normal M&I use is estimated to be 33 mg/L and 57 mg/L respectively to resolve the salt balance. Adding these estimates to the initial concentrations, a reasonable agreement with actual influent concentrations at the WWTPs is achieved for a 100% groundwater supply. Table 2-4 shows projected sodium, chloride, and TDS values using a 100% surface water supply, and 0% water softeners. Table 2-4 shows the theoretical best wastewater effluent if 100% surface water is used and 100% of all customers eliminate the use of all water softeners. It is more than likely that it will take time for an exerted education campaign to have all customers discontinue the use of brine discharging water softeners. However, using a substantial surface water supply, combined with the severe reduction of the use of brine discharging water softeners should result in eventual compliance with the RWQCB requirements for sodium, chloride, and TDS.

Table 2-3: Estimated Municipal Use Contributions for Salt Constituents and Comparison to Actual WWTP Influent When Using Groundwater as the Potable Water Supply

Parameter	Potable Water Concentrations (1) Footnote (a)	Est. Water Softener Contribution using Groundwater (2)	Est. Normal M&I Use Contribution (3) Footnote (b)	Est. Wastewater Concentrations with Groundwater (1)+(2)+(3)	Actual 2015 RM I Average Influent Footnote (c]
		Footnote (d)			
TDS (mg/L)	820	744	151	1,715	1,173
Sodium (mg/L)	127	251	33	411	313
Chloride (mg/L)	136	433	57	626	473

Notes:

a) Potable water quality data based on SSCWD biannual monitoring in 2015 of Wells 5 and 8.

 b) Sodium and chloride addition from normal M&I use was estimated to be 33 mg/L and 57 mg/L respectively for Ridgemark I wastewater distribution area. TDS addition from normal M&I use was estimated to be 151 mg/L. Based on results from *Technological and Economic Feasibility Study Alternatives to Limiting or Prohibiting Water Softeners* per Section 116786 of the Health and Safety Code, Bracewell Engineering (November 2007) for SSCWD water service area.

c) Actual 2015 WWTP weighted average influent quality based upon RM I influent.

d) Water softener contribution based upon 393 mg/liter hardness, 93% of households using softeners,

Table 2-4: Estimated Municipal Use Contributions for Salt Constituents and Comparison to Actual WWTP Influent When Using Lessalt Surface Water as the Potable Water Supply

Parameter	Potable Water Concentrations (1) Footnote (a)	Est. Water Softener Contribution Using Surface Water (2) Footnote (d)	Est. Normal M&I Use Contribution (3) Footnote (b)	Est. Wastewater Concentrations Using Surface Water (1)+(2)+(3)	Actual 2014 RM I Average Influent Footnote (c]
TDS (mg/L)	370	0	151	521	1,173
Sodium (mg/L)	82	0	33	115	313
Chloride (mg/L)	120	0	57	177	473

Notes:

a) Potable water quality data based on SSCWD annual monitoring in 2015 of LESSALT WTP.

 b) Sodium and chloride addition from normal M&I use was estimated to be 33 mg/L and 57 mg/L respectively for Ridgemark I wastewater distribution area. TDS addition from normal M&I use was estimated to be 151 mg/L. Based on results from *Technological and Economic Feasibility Study Alternatives to Limiting or Prohibiting Water Softeners* per Section 116786 of the Health and Safety Code, Bracewell Engineering (November 2007) for SSCWD water service area.

c) Actual 2015 WWTP weighted average influent quality based upon RM I influent.

d) Water softener contribution based upon 0% of households using softeners,

2.1.3 Evaporation Effects through Wastewater Treatment

Evaporation is a process that increases salt concentrations of the wastewater effluent but it does not impact the salt load. The wastewater disposal system for RM I is a series of ponds that are open to the atmosphere and allow evaporation to occur, raising salinity levels through a concentrating effect. The effect of evaporation is dependent on climate. Historic pan evaporation rates, estimated pond evaporation rates, precipitation rates, and net evaporation are shown in Figure 2-1. Pond evaporation is assumed at 75% of the pan evaporation rates.

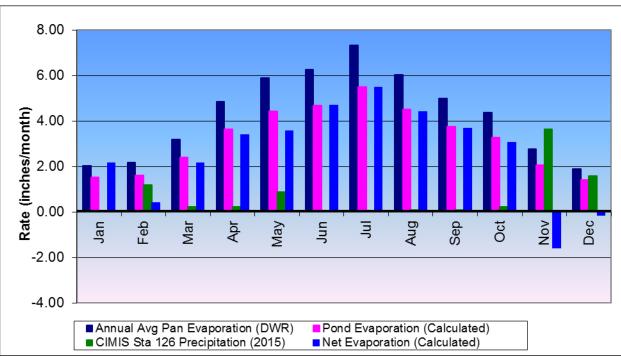


Figure 2-1: Evaporation and Precipitation Data

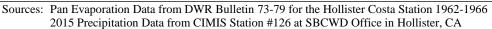


Table 2-3 summarizes the monthly TDS concentrations for the influent to and effluent from the wastewater treatment plant at RM I. Correlating influent and effluent TDS concentrations measured for a given month does not provide a meaningful comparison due to the variations in influent wastewater TDS and the hydraulic detention times of the treatment ponds.

Historically, evaporation was mistakenly thought to be a major contributor to the high salinity concentrations of the wastewater effluent. Since February 2005, RM I influent TDS has been measured using a composite sampler and TDS was general measured in 980 to 1,400 mg/l range for 2015. The variation in historic influent TDS levels compared to 2015 measurements by composite sampling is representative of the understanding that water softener regeneration occurs at night (grab samples during the day did not capture water softener discharges).

Month	RM I SBR Influent TDS (mg/L)	RM I SBR Effluent TDS (mg/L)
Jan-15	1400	1200
Feb-15	1200	1300
Mar-15	1200	1300
Apr-15	1100	1200
May-15	1300	1100
Jun-15	1100	1000
Jul-15	1100	1000
Aug-15	1200	1100
Sep-15	1200	1100
Oct-15	980	990
Nov-15	1100	950
Dec-15	1200	1000
Average	1173	1103

Table 2-3: 2015 Average Influent and Effluent TDS Concentrations

The 2015 influent and effluent TDS data in Table 2-3 shows that with the new treatment plant evaporation is not a contributor to the effluent TDS. From an annual perspective, net evaporation from the percolation ponds was estimated to be 6.13 AF at RM I (*2015 Annual Engineering Technical Report*). The 2015 influent flow was 178 AF to RM I. In 2015, net evaporation is approximately 3.4% of total influent flow. The 2015 TDS average influent of 1173 mg/liter, as shown in Table 2-3, for a final disposal salinity of approximately 1103 mg/liter. This is a 70 mg/liter decrease of from the Ridgemark influent to the pond disposal effluent.

2.1.4 Summary of Salinity Contributions to RM I Final Effluent

TDS concentrations are high in the potable ground water supply for the service area – approximately 820 mg/l. Lessalt Surface water is – approximately 370 mg/l. The 2015 influent flow was 11% ground water and 89% surface water. As this water is utilized in the service area, salinity concentrations increase steadily through normal use and through the regeneration of water softeners. After use, the water is discharged to the sewer collection system. Influent wastewater to RM I has TDS concentrations between 980 - 1,400 mg/l. Evaporation through the treatment process does not increases in the TDS concentration of the wastewater discharged for percolation. However, evaporation is a relatively small element of the salinity concentration issue and does not increase salt mass load to the basin.

2.2 Salt Mass Balance

Salt concentrations from Table 1-2 in conjunction with 2015 average flows from RM I (11% ground water and 89% surface water) were used to estimate salinity mass loads. The existing groundwater salinity contributes to a baseline salt load in the wastewater effluent of about 22 tons per year which represents salt that passes through from potable water extraction, use and percolation. In 2015, typical M&I use added 36 tons of salt to the basin, while water softeners, added an additional 167 tons of salt to the basin in 2015. The total salt added to the basin from groundwater salinity, municipal and industrial use, and water softeners is 266 tons of salt in 2015. Evaporation at the treatment ponds did not show an increase to the final TDS concentration and does not increase the mass salt load to the basin. Based on the calculated salt contributions from each source, the District believes that the contribution of salt from water softeners is over stated and has reduced due to the reduction in water softener use by the District's wastewater customers.

Table 2-4: 2015 Annual Salt Mass Loads

	RMI
Annual Average Influent Flow Total (gpd)	158,529
Average Effluent TDS Concentration (mg/L)	1103
Total Annual Salt to Disposal Ponds (tons)	266
Annual Salt from Potable Groundwater ^a (tons)	22
Annual Salt Load from Normal M&I Use (tons)	36
Annual Salt Load from Water Softeners ^b (tons)	167
Annual Salt Load from Surface Water (tons)	79

Footnotes:

- a) Salt associated with the groundwater supply is a pass through. Salt in groundwater are returned to groundwater basin.
- b) District believes salt contributions from water softeners is less than the calculated amount due to the reduction in water softeners used by District wastewater customers.

Notes:

- 1) Effluent TDS
- 2) Mass Load = Daily Flow * Concentration * (days/year) * (L/day)/(gal/day) * (ton/mg)
- 3) $1 \text{ mg} = 1.102 \text{ x } 10^{-9} \text{ ton}$
- 4) 1 gal/day = 3.785 L/day
- 5) Potable water salt load based on LESSALT 370 mg/L TDS contribution 2015
- 6) Normal M&I use salt load based on 151 mg/L TDS contribution

2.3 Groundwater Impacts

SSCWD has six monitoring wells located around the disposal ponds to monitor groundwater conditions. Details on groundwater monitoring well installation and evaluation of groundwater conditions are described in the *Groundwater Monitoring Well Installation Report* by Todd Engineers. A summary of the data collected from these wells in 2015 is included in Table 2-5. Groundwater wells 1, 4, and 5 were dry and were not able to be sampled. Groundwater well 3 was dry for three of the sampling quarters and was not able to be sampled during those quarters. Monitoring wells 2 and 6 appear to be monitoring mostly background groundwater. Monitoring well 3 which is located next to Ridgemark II ponds 3 and 4 appears to be monitoring diluted wastewater. Since Ridgemark II has been decommissioned, Monitoring Well 3 may begin to change.

MW 1 MW 2 MW 3 MW 4 MW 5 MW 6 (Pond 6) (Pond 6) (RMI) (RM II) (RM I) (RMII) TDS (mg/L) ND ND 840 1900 ND 1475 Chloride (mg/L)ND 263 750 ND ND 543 Sodium (mg/L)ND 87 460 ND ND 171 ND 7.58 7.43 ND 7.38 pН ND Total Nitrogen (mg/L)ND 7.1 2.8 ND ND 2.6 Dry for all 4 Dry for 3 Dry for all 4 Dry for all 4 sampling sampling sampling sampling rounds rounds Notes rounds rounds

Table 2-5: 2015 Wastewater Monitoring Well (MW) Average Water Quality

Notes: Average for 2015 quarterly data.

3 Salinity Reduction Measures

SSCWD is involved in a variety of programs and evaluations to reduce salt loading to the groundwater basin. These programs include water softening education activities, a water softening rebate program, implementation of alternate

water supply alternatives such as groundwater desalination and Central Valley Project (CVP) water treatment alternatives. Additionally, there are many regional efforts being conducted by the SSCWD, SBCWD, City of Hollister, and San Benito County that have a goal of reducing salinity throughout the entire groundwater basin. These cooperative efforts are critical towards developing efficient salt management solutions for all purveyors in the region.

3.1 Water Softeners

A major component of SSCWD's program is to reduce the amount of salts added through the use of water softeners in its service area. Sunnyslope, San Benito County Water District, and the City of Hollister have cooperated, through the Water Resources Association, to develop programs to enhance customer knowledge, and change customer behavior about water softeners. The program consists of a water softener rebate program, an education program, and local ordinances banning the installation or replacement of all salt discharging water softeners.

Water Softener Rebate Program

Residential customers of SSCWD can participate in a water softener rebate program that is administered by the Water Resources Association of San Benito County (WRA). This program was modified in 2014 to provide rebates for water softeners that do not discharge to the sewer system and require a replaceable cartridge that utilizes offsite regeneration. This program offers a \$250 rebate for replacement of self-regenerating water softeners with offsite regeneration water softeners and requires a minimum one year contract with an offsite regeneration service. Customers who demolished their water softeners entirely were given a \$300 rebate. 105 SSCWD water customers participated in the water softener rebate program in 2015.

Water Softener Education Programs

SSCWD attempts to educate its customers on the impact of water softeners on water quality through its website, through door hangers, and in the annual Drinking Water Quality Report. Educational literature provides information on how to operate water softeners to minimize salt loading. The WRA also promotes public education, distributes informational literature, and take surveys on water softener use at local events such as the San Benito County Fair.

Water Softener Requirements

In 2015 SSCWD adopted a new District Code that prohibits the installation or replacement of salt discharging water softeners by wastewater customers. It is currently unknown how many SSCWD customers have replaced their water softeners to replaceable cartridge systems or have quit using their water softeners completely.

Water Softener Ordinance

The Regional Water Quality Control Board recently took action to allow Sunnyslope County Water District, and other local agencies, to restrict the salinity discharge to the wastewater system from brine discharging water softeners. In February, 2015, SSCWD adopted a new District Code prohibiting the replacement of salt discharging water softeners or the installation of new salt discharging water softeners and participates in a coordinated program with the City of Hollister and San Benito County Water District to limit the salinity discharge from water softeners. This water softener program is being coordinated with the introduction of higher quality potable water to water/wastewater customers both within the City of Hollister and SSCWD sewer service areas...

3.2 LESSALT Water Treatment Plant & Future 2nd Water Treatment Plant

SSCWD, in a joint effort with the City of Hollister, and San Bento County Water District treats and delivers treated Central Valley Project (CVP) water from the San Felipe Project from the CVP to customers to lower hardness in the potable drinking water. CVP water has lower salinity levels than local groundwater and is a low hardness supply, which reduces the need for water softening. The higher quality supply reduces the need for water softening, which results in a reduction of salt to the groundwater basin. Historically, less than one third of SSCWD's customers received an intermittent supply of CVP water and none of the customers in the area served by RM I receive this treated surface water.

As part of the Hollister Urban Area Coordinated Water Supply and Treatment Plan, the Lessalt Water Treatment Plant has been upgraded and went into operation in December, 2014. This upgrade included a pump station and associated pipeline from the Lessalt WTP to the Ridgemark area and is now supplying SSCWD's Ridgemark area and wastewater customers with approximately 85% surface water. As part of the Hollister Urban Area Coordinated Water Supply and

Treatment Plan, a second treatment plant called the West Hills Water Treatment Plant will be constructed with a capacity of 4.5 million gallons per day. The West Hills Water Treatment Plant is currently under construction and is anticipated to begin operation in November, 2017. The combination of these two surface water treatment plants will increase the delivery of high quality drinking water to SSCWD and City of Hollister water customers and will result in reduced chlorides and sodium being discharged from the two agencies wastewater treatment plants.

In the spring of 2015 Sunnyslope began an extensive education and outreach program for all the residents of Ridgemark area to diminish the salinity discharge from water softeners. This effort has resulted in salinity levels dropping in the wastewater effluent from the Ridgemark I Wastewater Treatment Plant by 22%. SSCWD will continue these efforts in 2016 and this could bring the District into compliance with all waste discharge requirements in 2017.

	Average TDS (mg/l)	Sodium (mg/L)	Chloride (mg/L)	Average Hardness, CaCO ₃ (mg/l)
Delivered Water Quality	370	82	120	128

Table 3-1: LESSALT WTP Water Quality

3.3 Groundwater Desalination & Lime Softening

Groundwater treatment is a potential salt management solution in the distant future after 2024. Sunnyslope may pursue groundwater treatment to lower both hardness and salinity depending on water demands and the costs of expanding surface water use. Groundwater treatment is appealing from a long-term point of view as salt can be removed permanently from the San Benito County groundwater basin.

3.4 Hollister Urban Area Water and Wastewater Master Plan

In 2004, the City of Hollister, SBCWD, and San Benito County signed a Memorandum of Understanding (MOU) to develop the Hollister Urban Area Water and Wastewater Master Plan (HUAWWMP). In December 2007 the Board of SSCWD formally adopted the MOU Amendment, and formally joined the Governance Committee in 2009. The HUAWWMP master plan will ensure that stringent standards for wastewater management will be maintained to protect groundwater resources in the basin. The HUAWWMP study encompasses the SSCWD service area and will develop a comprehensive plan for water supply and wastewater treatment and disposal for the Hollister urban area. An update on HUAWWMP was completed in January 2010 with the publication of the implementation plan. The HUAWWMP master plan identifies programs and projects to achieve the stated objectives of having drinking water with less than 500 mg/l TDS and between 120 to 150 mg/l hardness. Targeted recycled water objectives would be to provide a reclaimed water supply with less than 500 mg/l TDS with a maximum of 700 TDS if such water quality objectives can be achieved at a reasonable cost. The development of the HUAWWMP commenced in November 2005 and is ongoing. In January 2010, the Hollister Urban Area Coordinated Water Supply and Treatment Plan were completed. In January 2012 the Programmatic EIR for the entire Hollister Urban Area Coordinated Water Supply and Treatment Plan was accepted by SSCWD, the City of Hollister, San Benito County Water District, and San Benito County.

Sunnyslope County Water District, the City of Hollister, and San Benito County Water District have executed a Water Supply and Treatment Agreement to implement the Hollister Urban Area Water and Wastewater Master Plan and Coordinated Water Supply and Treatment Plan. The three major water supply and treatment components for the Coordinated Water Supply and Treatment Plan are to upgrade the Lessalt Surface Water Treatment Plant to 2.5 mgd, construct of a new 4.5 mgd West Hills Surface Water Treatment Plant, and build a North (San Benito) County Groundwater Bank to supply these two surface water treatment plants in time of drought.

The City of Hollister and Sunnyslope County Water District have both adopted increases in water rates to fund the water supply projects identified in the Water Supply and Treatment Agreement and the projects are underway.

In September 2013, San Benito County Water District executed a contract for the construction of the upgrade to Lessalt Surface Water Treatment Plant. The Lessalt Water Treatment Plant is now complete and was put into service in December, 2014 including a pipeline and pump station to deliver treated surface water to the SSCWD wastewater customers. The West Hills Water Treatment Plant is now under construction and is scheduled to be complete by November, 2017.

3.5 Water Resources Association Groundwater Management Plan

WRA has developed a comprehensive Groundwater Management Plan (GMP) Update that addresses a number of groundwater quality and quantity issues. The GMP Update integrates salinity management into the broader basin plan and identifies a number of recommended programs for addressing salinity on a region wide basis. These programs are summarized in Table 3-2.

Program	Description
Salinity Education Program	Salinity education of both agricultural and M&I users.
Water Softener Ordinance	Public education on the impact of water softeners, retrofit ordinance and water softener conversion rebate programs.
Industrial Salt Control	Cooperative reduction efforts with food processors and other industrial dischargers whose operations contribute elevated salt levels
Surface Water Importation and Treatment	Construction of surface water treatment delivery and storage facilities to supply a total of 6 to 9 mgd in a phased program.
Groundwater Treatment and Concentrate Disposal	Construction of demineralization facilities could reduce salt loads up to 2,270 tons per year for the basin. Concentrate disposal options are considered

 Table 3-2: Salinity Management Programs in the Groundwater Management Plan

SSCWD, SBCWD, City of Hollister, and San Benito County are continuing to work toward implementation of these programs and projects. In 2010, the HUAWWMP described in Section 3.4 further evaluated reclaimed wastewater and interim locations for utilizing reclaimed wastewater from the City of Hollister's expanded wastewater treatment plant. A field demonstration project to utilize recycled wastewater on a variety of projects was performed in 2010. The field demonstration project was very successful. SBCWD in currently under construction with a recycled water pipeline that will deliver treated wastewater from the City of Hollister's wastewater treatment plant to farmers north of the City of Hollister beginning in 2016. Additional recycled water projects are being contemplated and planned in future years.

The WRA also initiated development of a water softener ordinance that has been adopted by the City of Hollister and SSCWD. In 2012 the Regional Water Quality Control Board granted SSCWD and other local agencies the authority to regulated salinity discharge into its sewerage system. Continued implementation of these salinity control efforts is envisioned in 2016 and beyond.

3.6 Summary of Salt Reduction Options

The salt reduction options available to SSCWD include education programs, water softener ordinances, and potable water supply improvements. Currently, the most immediate method is reduce wastewater salinity is to promote the reduction and/or elimination of use of water softeners in the RM I service area. Elimination of water softener use or replacement of brine discharging water softeners with cartridge type softeners which use of off-site softener regeneration services has the potential of removing 700-800 mg/l TDS if all water softeners were serviced in this manner.

As discussed in Section 3.4, The Lessalt Water Treatment Plant is now complete and was put into service in December, 2014 including a pipeline and pump station to deliver treated surface water to the Sunnyslope wastewater customers. This project eliminates the need for water softeners which discharge salinity into the SSCWD wastewater system. In 2017 the West Hills Water Treatment Plant is scheduled to be complete, which will increases the surface

water delivered to the Hollister Urban Area further reducing the need for water softeners in the City of Hollister and Sunnyslope County Water District's service areas. In conjunction with the additional surface water treatment facilities, an expanded education program will be continue to convince Ridgemark customers to reduce and/or eliminate the use of salt discharging water softeners.

4 Next Steps

Sunnyslope County Water District intends to begin meeting the requirements for sodium and chloride in 2017 by continuing to educate its wastewater customers about the improved water quality and reducing and or eliminating the use of brine discharging water softener use. In early 2015 SSCWD began a targeted effort to inform its wastewater customers of the improved water quality they began receiving in December, 2014 and to convince customers to quit adding salt to their water softeners or to bypass their water softeners. Efforts to encourage the permanent removal softeners or replacement with cartridge type softeners that are regenerated off site will also continue.

SSCWD intends to continue efforts in partnership with the City of Hollister and San Benito County Water District to increase the use of surface water to reduce the need for salt discharging water softeners and to increase public outreach efforts to educate customers and reduce and/or eliminate the use of water softeners in the Hollister Urban Area.

References

Bookman-Edmonston Engineering, Inc. Salinity Management Study. Metropolitan Water District/United States Bureau of Reclamation. June 1999.

- Bracewell Engineering, Inc. Technological and Economic Feasibility Study of Alternatives to Limiting of Prohibiting Water Softeners per Section 116786 of the Health and Safety Code. November 2006.
- City of Hollister, San Benito County, and San Benito County Water District. *Memorandum of Understanding Hollister Urban Water and Wastewater Management Plan.* December 2004.
- HDR and RMC Water and Environment. November 2009 & January 2010. Hollister Urban Area Master Plan Implementation Program. HUAWWMP Governance Committee. January 2010
- Kennedy Jenks. Groundwater Softening Demineralization Feasibility Study. Sunnyslope County Water District. 2003.
- Kennedy Jenks. Groundwater Management Plan Update for the San Benito County Portion of the Gilroy-Hollister Groundwater Basin. Water Resources Association of San Benito County. 2004.
- RMC Water and Environment. Long-Term Wastewater Management Plan. SSCWD. January 2006.
- RMC Water and Environment. 2006 Annual Engineering Technical Report. SSCWD. January 2007.
- Sunnyslope County Water District. 2005 Annual Drinking Water Quality Report. 2005.
- Todd Engineers. Groundwater Monitoring Well Installation Report. SSCWD. January 2006.
- Yates, Gus. Annual Groundwater Report for Water Year 2004. San Benito County Water District. 2004.

S:\A D M I N & E N G I N E E R I N G\RWQCB Annual Reports\Jan 2015 Annual Report\2014 SSCWD Salt Management Report JAN 2015.doc